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The development of a three-dimensional viscous incompressible flow generated behind
an infinitely long circular cylinder, impulsively started into rectilinear motion and
rotationally oscillating, is studied computationally. The numerical scheme, an hybrid
vortex method, is used to integrate the velocity–vorticity formulation of the Navier–
Stokes equations. The Reynolds number considered is Re = 400, which is moderate
though beyond the critical values Re2 � 190 and Re ′

2 � 260 for which the flow becomes
spontaneously three-dimensional. The numerical method is explained and its main
points are developed. This scheme is then applied to solve some two-dimensional
problems, both in order to validate the method and to compute a nominal two-
dimensional flow, required to measure the impact of three-dimensionality. The three-
dimensional flow past a steady cylinder is also compared to benchmark simulations.
Once the flow has become fully three-dimensional, beyond the transient regime and
saturation of instabilities, the cylinder begins a rotary oscillation around its axis. Two
kinds of rotations are considered: constant amplitude and several frequencies, and
constant frequency and various amplitudes. When amplitude and frequency are high
enough, the whole flow comes back to its two-dimensional state. This result gives
a justification for two-dimensional computations in the literature related to rotating
cylinders. For the first super-harmonic frequency of the flow, a parametric study is
performed in order to find the impact of the amplitude on the topology of the flow.
A bifurcation is clearly identified. Finally, the mechanisms involved in the return to
a two-dimensional state are explained: the interaction between transverse instabilities
and von Kármán streets is quantified by means of a correlation analysis.

1. Introduction and related work
The description of the wake behind bluff bodies in a viscous flow is of fundamental

importance in many engineering and scientific fields. The canonical case of the circular
cylinder has been reported in numerous works, concerning experimentations as well
as numerical investigations, in the simplified case of a plane or in the physical three-
dimensional space. The interest in body rotation is mainly motivated by the possibility
of modifying the wake generated downstream and the forces created by the wake on
the body. Such studies throw light on mechanisms that reduce drag forces, which is
a key point in aeronautics and other fields of application, described for example in
Sümer & Fredsøe (1997).

Most prior works concerned either steady cylinders in three dimensions, or
rotating cylinders in two dimensions, mainly due to restrictive Courant–Friedrich–
Levy conditions and computational cost. Early three-dimensional measurements, for
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a steady cylinder, are reported in Wieselsberger (1922), though the three-dimensional
cylinder has been a field of active research during the 1990s.

For incompressible wakes generated by a circular cylinder, two of the governing
non-dimensional parameters are the Reynolds number Re =U∞D/ν, where D is the
diameter of the cylinder, U∞ the free-stream velocity and ν the kinematic viscosity,
and the Strouhal number St = f D/U∞, where f = 1/T , T being the natural period of
the flow.

It is now well known that the wake of a circular cylinder becomes spontaneously
three-dimensional when Re � Re2 = 190. The instabilities and non-spanwise structures
of the flow have been exhibited experimentally by Williamson (1988), and later nu-
merically by Tomboulides, Triantafyllou & Karniadakis (1992). Several contributors,
such as Karniadakis & Triantafyllou (1992), Beaudan & Moin (1994), Thompson,
Hourigan & Sheridan (1994, 1996), Persillon & Braza (1998) and Kravchenko, Moin &
Shariff (1999), have since studied the transition to turbulence and other aspects of
these flows. Several diagnostics of the three-dimensional flows have been computed,
by Henderson (1995a) and Mittal (1996), in order to provide an analysis of three-
dimensional effects and comparison with experimental results such as in Williamson
(1996). Higher Reynolds numbers have been also considered in the later works, for
example Mittal (1996) or Jordan (1997), who have considered subgrid models.

It has been shown in Barkley & Henderson (1996) that two modes of transition,
commonly called Mode A and Mode B, occur respectively at Re2 � 189 and
Re ′

2 � 259. Consequently, realistic numerical simulations have to be performed in
three-dimensions when Re � 190.

When the cylinder is moving in steady or oscillating rotation, or oscillating in
translation (i.e. vibration), the condition of linear stability implies that time steps
have to be very small (hence the usual restriction to two-dimensional computations).
The first two-dimensional numerical simulations of a more complex motion than a
uniform translation dealt with the steadily rotating cylinder, initially by Coutanceau &
Ménard (1985) and Badr & Dennis (1985), followed by Chang & Chern (1991) and
Chen, Ou & Pearlstein (1993) among others. Badr et al. (1990) combines experiments
and numerical investigations in the range 103 � Re � 104. Oscillating flows, i.e. pure
oscillating translation, unlike uniform or accelerated motions, have been and are
still a major field of interest in naval research. Properties of these flows have been
studied for wide ranges of Keulegan–Carpenter numbers by many researchers, for
example Bearman (1997). On the other hand, studies on cylinders oscillating freely
under crosswise translation and undergoing uniform rectilinear motion have been
performed over the last few years, both numerically by Blackburn & Henderson
(1999) and experimentally by Govardhan & Williamson (2000). The same kind of
problem with forced oscillations is developed in Dütch et al. (1998), who combined
numerical simulation and experimentation.

The motion considered in the present paper is a uniform rectilinear motion with
rotational oscillation. This type of motion has been experimentally studied for low
Reynolds numbers by Taneda (1978), who has provided snapshots of streamlines,
and by Tokumaru & Dimotakis (1991) at Re = 15 000. Numerical simulations
corresponding to this case have been performed by Lu & Sato (1996), Chou (1997)
and Baek & Sung (1998). Accurate numerical simulations can be found in the recent
papers by Dennis, Nguyen & Kocabiyik (2000) and He et al. (2000), which are
considered in the present paper as benchmarks for diagnostics. When rotations of
higher amplitude are considered, diagnostics can be compared to the two-dimensional
study by Milano et al. (2000) and Milano & Koumoutsakos (2002).
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So far all the numerical simulations for rotating cylinders seem to have focused
on two-dimensional geometries, probably due to the computational cost of three-
dimensional simulations and available numerical tools. In order to be realistic, for
long time scales and for Reynolds numbers above 190, numerical simulations should
take into account the three-dimensionality of the flow. To perform such numerical
simulations, a robust numerical method has to be used, i.e. which still converges when
used with large time steps, in order to reach large time scales.

The goal of the present paper is to describe three-dimensional aspects of flows
around a rotating cylinder that is infinitely long. This cylinder is steady until the flow
is fully three-dimensional, at Re = 400. Then the cylinder begins to rotate, with an
angular position given by the formula

θ(t) = −A cos(πSF t)

with SF being the forced Strouhal number and A the peak angular position,
called amplitude. Consequently, the tangential velocity on the body is given by
V = Rθ̇ = AπSF R sin(πSF t). The ratio SF /St will be chosen as integer in order to
consider only harmonic and super-harmonic frequencies of the flow. This avoids
focusing on locking phenomena and competition between different frequencies.

The main result presented herein is that the flow comes back to a two-dimensional
state in the neighbourhood of the body for high amplitudes. The question of the
critical amplitude that leads to a two-dimensional flow is also considered in the case
for which SF /St = 2.

Furthermore, fast rotations can lead to a substantial drop in the drag coefficient.
This fact has been exhibited experimentally in Tokumaru & Dimotakis (1991) (at
Re =1.5 × 104) and numerically in Milano et al. (2000). For medium-range frequencies
of rotation, refer to Dennis et al. (2000) and He et al. (2000).

An outline of the present paper is as follows. The numerical method is first described
in § 2, and a few two-dimensional diagnostics are computed in § 3, in order to provide
a validation of the numerical scheme. The present results are compared to two-
dimensional computations by Henderson (1995b, 1997), Utnes (1997), Blackburn &
Henderson (1999), Dennis et al. (2000) and He et al. (2000). Section 4 shows the
spontaneous development of three-dimensionality. For Re = 400 � Re′

2 = 260, mode
B is identified by means of spectrum analysis, and diagnostics are compared to
Barkley & Henderson (1996), Henderson (1995a) and Wieselsberger (1922). The
development of three-dimensionality is shown to be exponential. Section 5 shows the
effect of a high amplitude of rotation (A= π/2) for a few frequencies, and exhibits
representative phenomena due to the body rotation. The effect of the amplitude on
the topology of the flow is then discussed in § 6 for SF /St =2. Finally, in § 7, the
mechanism leading to a two-dimensional flow is identified and discussed in the case
SF /St = 2 and A= π/2, and a correlation analysis is provided.

2. The three-dimensional Navier–Stokes equations
The present numerical method is a deterministic hybrid Vortex-In-Cell method

(particles carry vorticity, see Cottet & Koumoutsakos (2000) for general overview).
Fields which are solutions of Poisson or Helmholtz equations are computed on
a cylindrical grid instead of considering a pure Lagrangian method. Recent dev-
elopments in these methods for both two- and three-dimensional flow computations
are described in Cottet & Poncet (2002, 2003), based on preliminary results presented
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Figure 1. Cartesian and cylindrical coordinate basis.

in Cottet et al. (2002), Koumoutsakos & Leonard (1995) and Ould-Sahili, Cottet &
El Hamraoui (2000) for wake computations.

Let us consider the three-dimensional Navier–Stokes equations in their fully
nonlinear velocity–vorticity formulation

∂ω

∂t
+ u · ∇ω − ω · ∇u − ν∇2ω = 0 (2.1a)

where ∇ is a gradient operator, ν is the kinematic viscosity, ω is the vorticity field
and u is the velocity field, satisfying

∇ · u = 0, ∇ × u = ω. (2.1b)

Thus ∇ · ω =0. We also consider a smooth three-dimensional body B, which is
an infinitely long circular cylinder. On this cylinder there is the no-slip boundary
condition

u = Vslip êθ (2.1c)

where Vslip is the tangential body velocity. If the cylinder is not rotating, then Vslip = 0.
Throughout this paper, the far-field condition is

u(x) → U∞ as |x| → ∞, (2.1d)

and since the cylinder is infinitely long, all functions are periodic in the spanwise
direction. This period is denoted by L. In order to simplify notation, these two last
boundary conditions will no longer be written.

The basis is written (êx, êy, êz) in Cartesian coordinates and (êr , êθ , êz) in cylindrical
coordinates (see figure 1). The vector êx is in the streamwise direction and êy in the
crosswise direction. Throughout this paper, the body B is a circular cylinder, whose
axis is in the spanwise direction êz. The computational domain is then Ω = �3 � B.

2.1. Particle methods

In order to solve numerically the Navier–Stokes equations, we consider a Lagrangian
‘Particle-in-Cell’ method. This method, described below, is based on a hybrid
formulation of vortex methods.

Particles carry cells of vorticity, and velocity reconstruction uses Helmoholtz and
Poisson equations via back and forth interpolations on a grid, instead of a classical
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approach using multipole methods or stochastic methods such as Monte-Carlo. This
leads to a gain of accuracy (compared to Monte-Carlo methods) and speed (compared
to the multipole approach, see Cottet & Poncet 2002).

Let the particles be indexed by p = 1 . . . n. A particle is described by its position
xp(t), its vorticity ωp(t), and its volume vp . This volume does not depend on time due
to the incompressibility. Thus one considers solutions in the form

ω(t) =

n∑
p=1

ωp(t)δxp(t)vp (2.2)

where δxp
is the Dirac function at xp .

The no-slip condition (2.1c) may be written in a scalar form, with a no-slip
condition

u · êr = 0 (2.3a)

and the two tangential conditions

u · êθ = Vslip, u · êz = 0. (2.3b)

A fractional-step algorithm is then used to solve the Navier–Stokes equations (2.1a–
c) with the measure solution (2.2). Let ω0 be a measure solution at time t0.

The first step is pure convection, which ensures the no-slip condition (2.3a):

dωp

dt
= [∇ · (u ⊗ ω)]xp(t),

dxp

dt
= u(xp(t)),


 (2.4)

for t ∈ [t0, t0 + δt], where fields u and ω satisfy

∇ × u = ω, ∇ · u = 0 in Ω × [t0, t0 + δt],
ω(t0) = ω0 on Ω,

u · êr = 0 on ∂Ω × [t0, t0 + δt].


 (2.5)

The stretching tensor ∇ · (u ⊗ω) is equal to ω · ∇u when ∇ ·ω = 0. This tensor makes
the numerical scheme more stable when the vorticity is not algebrically divergence-
free. It remains to treat the diffusion and the tangential no-slip condition (2.3b). The
main difficulty of step (2.4) is the computation of the velocity field, which is discussed
in the following subsection.

2.2. Velocity computation and grid–particle coupling

The initial data of step (2.4) are the vorticity field ω0. This field contains the position,
the pointwise vorticity and the volume of all particles. Thus step (2.4) is a classical
dynamical system once the velocity field is known. This velocity must satisfy

∇ × u = ω on Ω,

∇ · u = 0 on Ω,

u · êr = 0 on ∂Ω.


 (2.6)

The usual deterministic approach of vortex methods is to compute this velocity
field with the Biot-Savart laws:

u(xq) = [Kε ∗ ω](xq) =

∫
Ω

Kε(xq − x)ω(x) dx =
∑
xp

Kε(xq − xp)ω(xp)vp
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given the particle description (2.2) of the vorticiy. Such an approach requires n2

evaluations of the mollified Green kernel Kε , n being the number of particles.
This computation is not yet technically possible for three-dimensional computations
involving millions of particles (see Cottet & Poncet 2002, 2003) in time-dependent
simulations, despite recent advances in multipole methods by Strickland et al. (1999),
Plouhmans & Winckelmans (2000) and Lindsay & Krasny (2001).

An alternative way to compute the velocity field is to use a stream function ψ .
For any divergence-free vorticity field and at any time t , the link between the stream
function and vorticity is

−∇2ψ = ω (2.7a)

with arbitrary boundary conditions which imply ∇ · ψ = 0 (thus ψ is globally
divergence-free). We also consider a harmonic potential φ, i.e.

∇2φ =0 (2.7b)

which satisfies
∂φ

∂n
= ∇ × ψ · êr

on the boundary ∂Ω . Eventually the velocity is computed by the Helmholtz decom-
position

u = ∇ × ψ − ∇φ

and satisfies equations (2.6).
In order to solve the Poisson equations (2.7a, b), the vorticity is interpolated onto a

grid. The velocity is computed on this grid and interpolated back to particles. Such
a method is called hybrid due to the fact that it uses both particles and grids. The
interpolation is a third-order tensor product formula (see Monaghan 1985), except
near the body where one-sided formulae are preferred. Details of this strategy of
interpolation can be found in Cottet & Poncet (2003).

2.3. Diffusion and boundary layer

Our approach is an extension to three-dimensions of the method used by
Koumoutsakos, Leonard & Pepin (1994) to study two-dimensional diffusion and
vorticity boundary conditions. Diffusion in the fluid, the second step of the fractional-
step algorithm, is performed through vorticity exchange among particles. The no-slip
condition (third step) is enforced by means of a vorticity flux at the boundary.

More precisely, let ω1 be the final value at t = t0 + δt of the first step (2.4).
The vorticity field on the boundary can be written in cylindrical coordinates
ω = (ωr, ωθ , ωz). The diffusion is given by the heat equation:

∂ω

∂t
= ν∇2ω in Ω × [t0, t0 + δt],

∂ωz

∂n
= 0 on ∂Ω × [t0, t0 + δt],

κωθ +
∂ωθ

∂n
= 0 on ∂Ω × [t0, t0 + δt],

ωr =0 on ∂Ω × [t0, t0 + δt],

ω(t0) = ω1 on Ω,




(2.8)

where κ = 1/R is the curvature of the cylinder. For a small viscosity ν, i.e. for a high
enough Reynolds number, this equation can be solved with an explicit scheme, a
‘Particle Strength Exchange’ algorithm, developed in Degond & Mas-Gallic (1989).
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Let ω2 be the solution of (2.8). Furthermore, for any t between t0 and t0 + δt , the
velocity produced by the solution of (2.8) is written uspu(t) and is commonly called
spurious velocity. This velocity uspu(t) is computed by solving equation (2.6).

The no-slip condition (2.3b) is enforced by means of the boundary layer. This viscous
boundary layer is step 3 of the fractional-step algorithm, another heat equation:

∂ω

∂t
= ν∇2ω on Ω × [t0, t0 + δt],

ν
∂ωz

∂n
= − ∂uspu

∂t
· êθ − ∂Vslip

∂t
on ∂Ω × [t0, t0 + δt],

νκωθ +
∂ωθ

∂n
=

∂uspu

∂t
· êz on ∂Ω × [t0, t0 + δt],

ωr = 0 on ∂Ω × [t0, t0 + δt],

ω(t0) = 0 on Ω,




(2.9)

where Vslip = Rθ̇ is the velocity on the surface of the body due to the rotation. The
Robin boundary conditions enforce ∂t∇ · ω =0. We have

∂

∂r
(∇ · ω) =

(
∇2ωr − ωr

r2
− 2

r2

∂ωθ

∂θ

)
+

1

r2

∂ωθ

∂θ
+

1

r

∂

∂θ

∂ωθ

∂r
+

∂

∂z

∂ωz

∂r

= (∇2ω) · er +
1

r

∂

∂θ

(
1

r
ωθ

)
+

1

r

∂

∂θ

∂ωθ

∂r
+

∂

∂z

∂ωz

∂r

=
1

ν

∂ωr

∂t
+

1

r

∂

∂θ

(
κωθ +

∂ωθ

∂r

)
+

∂

∂z

∂ωz

∂r

=
1

ν

∂

∂t

∂uspu · ez

r∂θ
− 1

ν

∂

∂t

∂uspu · êθ

∂z

=
1

ν

∂

∂t
(∇ × uspu · er ) =

1

ν

∂

∂t
(ω2 · êr ) = 0.

Consequently, divergence satisfies the well-posed heat equation

∂(∇ · ω)

∂t
− ν∇2(∇ · ω) = 0 in Ω×]t0, t0 + δt[,

∇ · ω(t0) = 0 on Ω,

∂

∂r
(∇ · ω) = 0 on ∂Ω×]t0, t0 + δt[,




and thus remains zero over time and space.
The solution of (2.9) can be computed in its integral form, see Friedmann (1964)

and Koumoutsakos et al. (1994):

ω(x, t) =

∫ t

t0

∫
∂Ω

G(x, t; ξ, τ )µ(ξ, τ ) dξ dτ

where G is the three-dimensional heat kernel, with τ < t:

G(x, t; ξ, τ ) = (4πν(t − τ ))−3/2 exp

(
− ‖x − ξ‖2

4ν(t − τ )

)
and µ a weighted field defined on the physical boundary. The construction of this
weighted field is based on the first-order development of the integral equation satisfied
by µ, and does not create divergence, as seen above (see Cottet & Poncet 2003). This
technique is a very robust and flexible algorithm for boundary layer computation, and
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can be used in various situations involving tangential velocities (see control strategies
in Poncet & Cottet 2003; Cottet & Poncet 2004; and Poncet & Koumoutsakos 2004).

2.4. Conclusions the numerical scheme

A fractional step algorithm (2.4), (2.8), (2.9) has been developed in order to
approximate the solutions of the Navier–Stokes equations. The first step, given by
equation (2.4), is a convection step. The second one is the diffusion step, given by the
heat equation (2.8). The third and last step is the boundary layer computation, defined
by equation (2.9). It enforces the no-slip conditions (2.3b). Moreover, particles are
periodically remeshed, mainly using the third-order kernel introduced by Monaghan
(1985).

If we write as respectively ω2 and ω3 the solutions of (2.8) and (2.9) at t = t0 + δt ,
then ω2 + ω3 is a second-order approximation of the solution of the Navier–Stokes
equations (2.1a–c) at t = t0 + δt .

The computational domain Ω used for three-dimensional simulations at Re =400
is an ‘O-grid’ defined by

R � r � R + 4πR and −2πR � z � 2πR.

The discretization is 256 × 128 × 128 for the variables r , θ and z respectively. The
great stability of the Lagrangian method allows one to use a non-dimensional time
step U∞δt/R = 0.1. The solver takes about 145 s per time step with the resolution
above, which means about 35 µs per grid point on a DEC-α server.

2.5. Mechanical diagnostics

The non-dimensional time t depends on the dimensional time t through the relation

t =
U∞t 

R
.

From now on only the non-dimensional time t will be used.
The Reynolds number is defined as

Re =
U∞D

ν

and the non-dimensional frequency of the flow, i.e. the Strouhal number, is defined as

St =
f D

U∞
(2.10)

where f =1/T is the natural frequency of the flow. The drag and lift coefficients
are computed as in Koumoutsakos & Leonard (1995). The friction coefficients are
defined by

CDF = − ν

U 2
∞RL

∫
∂Ω

ωz sin θ ds, CLF =
ν

U 2
∞RL

∫
∂Ω

ωz cos θ ds,

and the pressure coefficients by

CDP = − ν

U 2
∞RL

∫
∂Ω

∂ωz

∂r
r sin θ ds, CLP =

ν

U 2
∞RL

∫
∂Ω

∂ωz

∂r
r cos θ ds.

Thus the expression for the drag coefficient is

CD = CDF + CDP (2.11a)



Topological aspects of wakes behind rotary oscillating cylinders 35

(a) Re CD ĈL St (b) Re CD ĈL St

200 1.3389 ±0.0015 0.70 0.199 200 1.3412 0.700† 0.1972, 0.196†

300 1.3820 ±0.0031 0.96 0.211 300 1.3769 – 0.2113
400 1.4080 ±0.0043 1.08 0.2228 400 1.4142 – 0.2198
500 1.4433 ±0.0050 1.23 0.230 500 1.4449 1.19∗ 0.2254

1000 1.5264 ±0.0097 1.45 0.241 1000 1.5191‡ – 0.2372, 0.2392‡

Table 1. Diagnostics for Reynolds numbers between 200 and 1000. (a) Present computations.
(b) Henderson (1995b) and Henderson (1997), except ∗ Blackburn & Henderson (1999), † Utnes
(1997) and ‡ He et al. (2000). The error on CD is the 90% confidence interval of the mean drag
coefficient.

and the lift coefficient is

CL = CLF + CLP . (2.11b)

3. Drag coefficients of two-dimensional flows
In order to provide a validation of the numerical scheme and study the behaviour of

the nominal two-dimensional flow, we perform several two-dimensional simulations.
Since these two-dimensional computations exhibit the nominal state of forthcoming
three-dimensional simulations, the Reynolds number is chosen in the range between
200 and 1000.

3.1. Drag coefficient of a flow past a steady cylinder at various Reynolds numbers

In this section, a few values of the drag and lift coefficients are computed in the case
of a two-dimensional flow.

The cylinder is impulsively started at t = 0+, and is slightly rotating during the
early time with a tangential velocity Vslip = sin(πt/2) when t � 4. This slight rotation
is performed in order to break the crosswise symmetry of the flow. This triggers the
first von Kármán instability, which would appear later otherwise, thus there is a gain
of computational time since this aspect of the flow is not the topic of the present
study. For t � 4, the cylinder is steady, i.e. Vslip = 0.

Figure 2 shows the drag and lift coefficient for various Reynolds numbers between
200 and 1000. Table 1 shows values of the mean value of the drag coefficient CD ,
denoted CD , the mean of peak values of the absolute lift coefficient |CL|, denoted
ĈL, and the Strouhal number St . In this table, one can compare the values found by
the present method to the results of Henderson (1995b) and Blackburn & Henderson

(1999). Note that Blackburn & Henderson (1999) gives a range of 1.18–1.20 for ĈL,
which emphasizes the sensitivity of this quantity. One can see a quite good agreement
between the present values and the related works, especially for the drag coefficient
plotted on figure 3. In order to get such an accuracy, the computational domain has
been radially extended up to (1 + 8π)R for these two-dimensional simulations.

3.2. Drag coefficient of a flow past a rotationally oscillating cylinder

This discussion on two-dimensional flows can be found in several forms in the existing
literature. Note that Dennis et al. (2000) provides a lot of diagnostics for a rotary
oscillating cylinder, especially for drag and lift coefficients.

The simulation begins as described in the last section, i.e. the symmetry of the flow
is broken by a slight rotation before t � 4, and then the cylinder stays steady. At



36 P. Poncet

–1

0

1

2

0 20 40 60 80 100

D
ra

g 
an

d 
li

ft
 c

oe
ff

ic
ie

nt
s

–1

0

1

2

0 20 40 60 80 100

–1

0

1

2

0 20 40 60 80 100

D
ra

g 
an

d 
li

ft
 c

oe
ff

ic
ie

nt
s

Time

–1

0

1

2

0 20 40 60 80 100
Time

–1.5

–1

–0.5

0

0.5

1

1.5

2

0 20 40 60 80 100 120 140

D
ra

g 
an

d 
li

ft
 c

oe
ff

ic
ie

nt
s

Time

(a) (b)

(c)

(e)

(d)

Figure 2. Drag and lift coefficients at Re =(a) 200, (b) 300, (c) 400, (d) 500 and (e) 1000.
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values (—) and table 1 with 90% confidence intervals; (b) is a zoom of (a).
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SF /St 0 1.0 1.2 1.45 1.45 2.0 3.0
A – π/2 π/2 π/2 3/π π/2 π/2

Vmax 0 1.135 1.362 1.646 1 2.270 3.405
CD 1.443 2.60 1.66 1.36 1.30 1.09 0.82

Table 2. Mean drag coefficients at Re = 500 for various rotation parameters (Vmax = AπSF ).

(a) (b)

Figure 4. Streamlines at Re = 500 for A = 3/π and SF = 1/3 � 1.45St , obtained by (a) Dennis
et al. (2000), and (b) the present work. Part (a) was kindly provided by S.C.R. Dennis.

t = 60, the rotation is activated. Our formula of the tangential velocity on the body is

Vslip = AπSF R sin(πSF t) (3.1)

where SF is the forced Strouhal number, A the rotation amplitude and R the radius
of the cylinder. The quantity SF is defined in the same spirit as the natural Strouhal
number St (see equation (2.10)), that is to say

SF =
fcD

U∞

where fc is the frequency of the cylinder rotation.
If a point on the cylinder is initially set at θ(0) = −A, its location at time t is given

by

θ(t) = θ(0) +
1

R

∫ t

0

Vslip(u) du = −A cos(πSF t)

since Vslip =Rθ̇ . This makes the formula (3.1) especially interesting.
The forced Strouhal number SF is chosen as a multiple of the natural Strouhal

number St . Moreover, we will call high amplitude a rotation whose amplitude A is
π/2.

It is known that a rotation whose amplitude and frequency are high enough
(at least SF = 2St ) leads to a substantial drop in the drag coefficient (cf. numerical
investigations of He et al. 2000; Milano et al. 2000; Dennis et al. 2000). The drag
coefficient may even decrease by a factor 2 for high Reynolds number, as shown in
the experimental work by Tokumaru & Dimotakis (1991) at Re = 15 000.

Table 2 shows the mean drag coefficients at Re = 500 for a few forced Strouhal
numbers from SF = St up to SF = 3St , with A= π/2. When SF � 1.45St , the mean
drag decreases. Moreover, the drag coefficient decreases by 25% for SF = 2St and
by 43% for SF = 3St . A special case with SF = 1/3 and A= 3/π has been performed
in order to compare with Dennis et al. (2000) (figure 4), whose cylinder is initially
rotating. The present computation gives CD =1.30 which somewhat disagrees with
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Figure 5. Three-dimensional structures of vorticity, present work at Re = 300, doubled
spanwise by periodicity (t = 350), with a clearer view of axial vorticity in (b).

Dennis et al. (2000) who find a value close to 1.11, but shows a good agreement on
streamlines (see figure 4). Given the wide range of values for CD presented herein
and in Dennis et al. (2000), He et al. (2000) and Milano et al. (2000), and given its
sensitivity in Tokumaru & Dimotakis (1991), the accuracy of the present values of
CD is questionable when the cylinder is rotating at high frequency. Nevertheless, the
present computations and those provided by He et al. (2000) are compatible and seem
to be converged.

4. Three-dimensional flow past a steady cylinder
It is well known that the wake of a circular cylinder becomes spontaneously

three-dimensional when Re > 190. This fact is thoroughly investigated and analysed
in Barkley & Henderson (1996) for the linearized Navier–Stokes equations, and
in the survey paper by Williamson (1996), for the experimental aspects. After this
transition, the von Kármán streets are no longer spanwise invariant. If Re > 260,
thinner structures appear as links between the streets, sometimes referred as ‘fingers’ of
vorticity (cf. Jordan 1997). These thin structures correspond to the mode of instability
called mode B, and Barkley & Henderson (1996) show that their wavelength is 0.82D,
and that they appear at Re = 259 ± 2.

Since the present computations are performed at Re =400, mode B is the dominant
mode of instability (see figure 5) and we will focus our attention on its wavelength.
We consider the Fourier transform of the velocity

ûβ(x, y) =

∫ L

0

u(x, y, z)e−2iπβz/L dz

which corresponds to a non-dimensional wavelength λz/D = L/βD. The axial energy
spectrum is defined by

‖ûβ‖2
2 =

∫
�2

|ûβ(x, y)|2 dx dy

with respect to the non-dimensional wavelength λz/D.
This spectrum is plotted on figure 6, which shows a strong resonance around

λz/D � π/8, i.e. around 0.79. Furthermore, near the transition at Re ′
2 = 260, the

wavelength of mode B has been predicted close to λz/D =0.82 by Barkley &
Henderson (1996). This wavelength can change as Re increases since the domain
of unstable wavelengths becomes larger. One can even find several wavelengths
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Figure 6. Axial energy spectrum at Re =400. (a) Energy spectrum with respect to λz/D and
its resonance at λz/D � 0.73, at t = 60 during the transient from two and to three-dimensions.
(b) Energy spectra with respect to the modes β at t = 60 (—), t = 100 (– –) and t = 150 (- - -).

of mode B instability for a same Reynolds number, depending on the streamwise
position, when Re > 600 (see Barkley & Henderson 1996 and Persillon & Braza 1998).
Mode B is the main mode of turbulence, at least until Re =1900 (see Unal & Rockwell
1988), where turbulence begins to govern the flow.

On the one hand, these properties justify the comparisons between flows at Re = 260
and Re =400. On the other hand, this explains why the velocity spectrum β → ‖ûβ‖2

2

plotted on figure 6 is exponential and does not exhibit a −5/3 power behaviour. In
the range 190 � Re � 2000, cylinder wakes are three-dimensional but not turbulent.
Moreover, figure 6 shows the velocity spectra related to the development of the
instabilities (t = 60), the saturation of these instabilities (t = 100), and when the three-
dimensionality is fully developed (at t = 150).

The evolution of the three-dimensionality inside the computational domain can be
shown by means of the transverse enstrophy Z⊥ defined as follows:

Z⊥ =
1

2

(
‖ωx‖2

2 + ‖ωy‖2
2

)
=

1

2

∫
Ω

ω2
x(ξ ) dξ +

1

2

∫
Ω

ω2
y(ξ ) dξ

which is plotted with respect to time on figure 7. This gives the amount of
transverse vorticity (vorticity which is not spanwise), and so is a measure of the
three-dimensionality of the flow in the neighbourhood of the body. Figure 7 exhibits
in more detail the phenomenon shown on the spectra of figure 6: at t � 40, the
non-axial noise becomes structured and the flow enters an exponential development
of mode B, i.e.

1

2

(
‖ωx‖2

2 + ‖ωy‖2
2

)
� a et/2.9

with a = 7.14 × 10−12. At t � 110, these instabilities saturate and the three-
dimensionality is then fully developed. Note that this exponential behaviour is not
noisy.

The spectral profile P is introduced in order to capture the spanwise structures for
a given wavelength. This spectral profile is defined by

Pλ/D(x, y) = |ûL/λ(x, y)|2. (4.1)

Figure 8 shows this profile at the resonance wavelength, compared to the profile of
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Figure 8. Isovalues of spectral profile at main growth mode. (a) P0.82 from Barkley &
Henderson (1996) at Re = 260. (b) P0.79 from present work at Re = 400.

Barkley & Henderson (1996) at Re = 260. Once again the two results are in good
agreement.

The effect of three-dimensionality on the drag coefficient CD is plotted on figure 9,
as well as the friction coefficient CDF , the two-dimensional mean value at 1.41 from
table 1, consistent with Henderson (1995b), and eventually the value 1.19, consistent
with the three-dimensional experimental results by Wieselsberger (1922) and Jordan &
Fromm (1972). The friction coefficient CDF does not seem to be much affected by the
strong three-dimensionality of the flow in the neighbourhood of the cylinder.

In addition to these diagnostics, one can also notice, on an more qualitative level,
the great similarity between the present results and experimental snapshots provided
by Williamson (1996). A surface of isovorticity obtained beyond the transient is
plotted on figure 10 and compared to an experimental picture in Williamson (1996).
The similarity concerns the spacing between von Kármán streets (due to the small
dependency of the Strouhal number on the Reynolds number above Re′

2), the topology
of fingers of vorticity, the location and the size of knots, and local dislocations of
spanwise streets.
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Figure 9. Effect of three-dimensionality on the drag coefficient CD at Re =400. The friction
coefficient CDF is plotted a dashed line. Dotted lines show values at 1.41 and 1.19.
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Figure 10. Visual comparison of three-dimensional structures of vorticity between
experimentation (a, Williamson (1996) at Re = 270) and present work (b, at Re = 400, doubled
spanwise by periodicity, t = 160).

5. Three-dimensional flows past a rotating cylinder with
high-amplitude rotation

This section focuses on flows behind a cylinder rotating by half a revolution, i.e.
A= π/2, with various rotation frequencies. The last section has shown that the three-
dimensionality of the flow past a steady cylinder and its effects on diagnostics have
been well resolved at Re = 400. Figure 7 shows that the saturated regime is reached
around t � 100. In order to avoid any transient effect, we wait for t = 160 before
activating the rotation. Then the cylinder begins to oscillate around its axis according
to formula (3.1).

In order to find the effect of the rotation on the topology of the flow, several
surfaces of isovorticity, at several levels and different times are plotted, for SF = St

and SF =2St . This is shown on figure 11, on which one can see the evolution of the
three-dimensionality in the neighbourhood of the body by means of the transverse
vorticity:

ω⊥ =
(
ω2

x + ω2
y

)1/2
.

One can see on figure 11 that the three-dimensionality tends to disappear (see also
Poncet 2002). Indeed, only a small quantity of transverse vorticity remains at t = 240
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Figure 11. Effect of half a full rotation on the shape of the flow at Re = 400. Surfaces of
spanwise isovorticity ωz = ± 1.2 and transverse vorticity ω⊥ = 0.25 unless written otherwise,
for frequencies SF = St and SF = 2St .

when SF = St , i.e. when the rotation frequency is locked at the natural frequency of
the flow St = 0.223. Moreover, one can also see that no visible three-dimensionality
remains at t =240 at the higher frequency SF = 2St , i.e. when the rotation frequency
is the first superharmonic of the nominal flow.
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Figure 13. Effect of body rotation on the drag coefficient CD at Re = 400, with SF = 2St and
A = π/2. —, Steady and three-dimensional; ·−·, steady and two-dimensional; – –, rotation
two-dimensional; - - -, rotation three-dimensional. Dotted lines show values at 1.05, 1.19 and
1.41.

This phenomenon is quantified on figure 12, which shows the transverse enstrophy
Z⊥, i.e. half the mean square of transverse vorticity over the computational domain.
One can see that with superharmonic rotation with the transverse enstrophy decreases
down to 5 × 10−7, which corresponds to 2 × 10−13 per particle (and roughly half per
grid point). Consequently we can say that the flow is totally two-dimensional in a
large neighbourhood of the cylinder. Also, when SF = St , the transverse enstrophy
tends to a mean value of 3.05, which means that the global three-dimensionality is
divided by 65, i.e. decreases by 98.5%.

Since the flow comes back to a two-dimensional state when SF = 2St , the drag
coefficient CD should be compared to the drag coefficient of the two-dimensional
rotating cylinder. This comparison is shown on figure 13, where we can see that
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Figure 14. Isovorticity surface at t =255, Re = 400, SF = 2St and A = π/5.

both the two-dimensional and three-dimensional computations lead to a mean drag
coefficient value of 1.05. The nominal two-dimensional drag coefficient is 1.41, and
the three-dimensional unforced drag coefficient is 1.19: this means a drop of 12%
from the three-dimensional flow and 26% from the two-dimensional flow.

6. Effect of the amplitude on three-dimensionality
In order to study the effect of the amplitude on the three-dimensionality of the

flow, we have to consider a constant frequency. Indeed, for a given frequency, for
example SF =2St , we have seen in the last section that with an amplitude of A= π/2
the flow comes back to its two-dimensional state. This is not the same for A= π/5,
in which case the flow remains three-dimensional, as it can be seen on figure 14.

The question addressed in this section is to find a critical value A0 which separates
two- and three-dimensional flows. This critical amplitude depends on the rotation
frequency SF and on the Reynolds number: given the computational cost of these
simulations, it is too ambitious to consider a parametric study of the bifurcation.

Consequently, we focus on the case Re = 400 and SF =2St , and search for a small
interval of values of A for which the top of the interval leads to a two-dimensional
flow and the bottom of the interval leads to a three-dimensional flow. The tool
which allows us to decide whether the flow is two-dimensional or three-dimensional
in the neighbourhood Ω of the body is the same as in last section, i.e. the transverse
enstrophy:

Z⊥ =
1

2

(
‖ωx‖2

2 + ‖ωy‖2
2

)
=

1

2

∫
Ω

ω2
x(ξ ) dξ +

1

2

∫
Ω

ω2
y(ξ ) dξ.

As a first approach, one can plot Z⊥ for a wide range of amplitudes A. Figure 15
shows these curves for amplitudes from A= π/5 up to A = π/2 with a logarithmic scale.
On this figure, three curves, corresponding to A= π/2, A= 2π/5 and A= π/3, lead
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Figure 15. Transverse enstrophy Z⊥ at Re =400 with respect to time, for several rotation
amplitudes, in a logarithmic scale. From bottom to top: A = π/2, A = 2π/5, A = π/3, A = 2π/7,
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Figure 16. Transverse enstrophy Z⊥ at Re = 400 with respect to time, for several rotation
amplitudes in a linear scale. From bottom to top: A = π/2, A = π/3.5, A = π/4 and A = π/5.

clearly to a two-dimensional flow. The two curves above, i.e. A= π/3.5 and A= π/3.75,
do not seem to decrease down to zero. Nevertheless, between the activation of the
rotation at tc =160 and t = 300, the mean transverse enstrophy becomes more than
400 times smaller, thus one can consider that this flow is two-dimensional. In order
to clarify this property, the same quantity is plotted without a logarithmic scale
on figure 16. One can check that A= 2π/7 = π/3.5 can indeed be considered as a
two-dimensional flow. The two last curves of figure 15 show that amplitudes A � π/4
allow the flow to stay three-dimensional in the neighbourhood of the body. Once
again, as an example, figure 14 shows such a flow, for A= π/5.

The bifurcation can then be tracked between A= 2π/7 and A = π/4. In order
to locate the critical value, five amplitudes A= π/α have been tested, α being 3.5,
3.75, 3.8, 3.9 and 4. The result is plotted on figure 17, and by means of this figure,
the critical value A0 is located in the interval π/3.8 � A0 � π/3.9: figure 18 shows
the transverse enstrophy for these two values. Note that this critical value depends
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slightly on the computational domain, because at this amplitude a larger domain
would contain a small amount of three-dimensional structures of vorticity. Indeed,
one must keep in mind that we focus on the amount of three-dimensionality in the
(large) neighbourhood r � (1 + 4π)R of the body.

An open question is the dynamic of these three-dimensional structures. Indeed, they
can either follow the potential stream and leave infinitely far away from the body,
or, as suspected but not proved, reach a critical distance where three-dimensionality
is stable. The computational cost required to prove this is currently far out of reach.

To summarize all these computations, one can plot the mean residual transverse
enstrophy between t1 = 250 and t2 = 300:

Z⊥ =
1

t2 − t1

∫ t2

t1

Z⊥(t) dt =
1

2(t2 − t1)

∫ t2

t1

‖ωx(t)‖2
2 + ‖ωy(t)‖2

2 dt

=
1

2(t2 − t1)

∫ t2

t1

∫
Ω

ωx(ξ, t)2 + ωy(ξ, t)2 dξ dt
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Figure 19. Localization of residual transverse vorticity, at t = 280. (a) SF = St and
A = π/2, ω⊥ = 0.25; (b) SF =2St and A = π/7, ω⊥ =0.1.

with respect to the amplitude A. This curve, plotted on figure 18, gives the mean re-
maining amount of non-axial vorticity, and its behaviour when the rotation amplitude
A varies. This figure shows that this critical value makes a clear transition between
two-dimensional flows (to the right of the critical value) and three-dimensional flows
(to the left of the critical value).

7. Mechanisms involved in the return to a two-dimensional flow
From the numerical investigations performed above (at Re = 400), one can identify

two kinds of residual transverse vorticity.
These two states of residual three-dimensionality are described as follows. When

the frequency is low (here at the natural frequency SF = St ), a small amount of
three-dimensionality remains close to the body, where gradients of vorticity are the
strongest. When the frequency is higher (here at SF = 2St ), residual three-dimensional
structures are carried downstream, and seem to lose significance, at least up to an
hypothetical critical distance, which is in any case outside the present computational
domain. Snapshots of these two cases are shown on figure 19, which exhibits a low
level of transverse isovorticity. Note that these levels are low, thus these two flows are
close to a two-dimensional state.

In this section, we focus on the case SF =2St (since the harmonic case remains
slightly three-dimensional). The return to a two-dimensional flow has already been
quantified above by means of the transverse enstrophy Z⊥ (see § 5 and figure 13).

Before quantifying the mechanism leading to a two-dimensional flow, can describe
it qualitatively. We can guess from figure 20 that transverse eddies (non-spanwise
structures of vortices) are carried downstream by the spanwise von Kármán streets.
The strength of the von Kármán streets becomes greater when the cylinder is rotating,
because the vorticity created in the boundary layer is ωz = −2πRL Vslip and tends to
increase strength near the body.

In order to quantify this phenomenon, i.e. the fact that spanwise von Kármán
streets carry the transverse eddies downstream, one can define two quantities, still
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Figure 20. Motion of transverse eddies, Re = 400, A = π/2 and SF = 2St . (a) t = 165,
(b) t = 170, (c) t = 175.

based on partial values of the enstrophy. They are the streamwise distribution of
transverse vorticity

F ⊥(r, t) =

∫ L

0

∫ 2π

0

ω2
x(r, θ, z) + ω2

y(r, θ, z) r dθ dz (7.1)

and the streamwise distribution of spanwise vorticity

Fz(r, t) =

∫ L

0

∫ 2π

0

ω2
z (r, θ, z) r dθ dz (7.2)

which satisfy ∫ R∞

R

F ⊥(r, t) + Fz(r, t) dr = 2 Z.

The isovalues of these quantities give a good idea of the dynamics of transverse and
spanwise eddies, providing a link between streamwise position and time. Moreover, a
curve with a low value of F ⊥ gives the evolution of the front of three-dimensionality,
as plotted on figure 21. This figure shows both the curves F ⊥(r, t) = 0.25 (evolution of
the front of three-dimensionality) and F ⊥(r, t) = 20 (evolution of the front of strong
transverse eddies).

In order to study quantitatively the evolution of the front of transverse eddies, it
is interesting to compare their dynamics with spanwise von Kármán street dynamics.
This comparison is provided by means of the isovalue Fz(r, t) = 5, plotted on figure 22,
which shows the evolution of the positions von Kármán streets. Both curves Fz(r, t) = 5
and F ⊥(r, t) = 0.25 are plotted on figure 22(b), on which it is rather clear that after
t = 175, the front of transverse eddies is locked on von Kármán streets and is carried
downstream.

Consequently, in this section, from now on, we aim to prove the following assertion:
the three-dimensional instabilities decrease in strength and are carried away in the
stream when rotation frequency and amplitude are high enough. They finally disappear
due to this transport phenomenon. The fact that they decrease in strength and eventually
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disappear is already proved because

F ⊥(r, t) −→ 0
t→∞

for any r , as shown on figure 21.
In order to quantify the transport phenomenon, one removes the von Kármán

street on which the front of instabilities seems to lock, and defines the front location
of spanwise eddies

Xz(t) = argmin{r such as Fz(r, t) = 5}
and the front location of transverse eddies

X⊥(t) = argmin{r such as F ⊥(r, t) = 0.25}

as shown on figure 23.
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are the same as for figure 21).

These quantities are useful in the present case, because the assertion above that
instabilities are captured by von Kármán streets is equivalent to a linear correlation
between Xz and X⊥ over time. Figure 24 shows X⊥ with respect to Xz, and the
dependence is clearly linear when r > 7R. One eventually obtains a correlation
coefficient of 99.99%. The assertion is then proved to be valid, and the mechanism
by which the instabilities disappear in the wake is identified. To conclude the present
analysis, a comment on the domain of return to a two-dimensional flow is needed. An
hypothetical critical distance from the body where the flow stays three-dimensional
has been mentioned above. The enstrophy distribution, as a function of the distance
from the body, is exponentially decreasing, thus reaching a value for which transverse
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vortex structures are stable. Such a stability analysis requires very large domains with
a control of the cells aspect ratio, which is not currently technically possible.

8. Conclusions
A Lagrangian numerical method has been developed to solve the fully nonlinear

three-dimensional Navier–Stokes equations. The stability due to the implicit resolution
of transport terms allows the use of large time steps. This means that one can
compute and study the asymptotic behaviour in time of three-dimensional flows. The
numerical scheme has been validated on both two-dimensional and three-dimensional
diagnostics of flows behind a steady cylinder, and on two-dimensional flows past
a rotating cylinder. The results obtained are consistent with some of the existing
literature, numerical as well as experimental.

It has been shown, at Re = 400, that in a large neighbourhood of the body, the
flow comes back to its nominal two-dimensional state all over the domain when
the amplitude and frequency are high enough (here A= π/2 and SF /St =2). In this
case, a substantial drop in the drag coefficient is seen, though not as dramatic as for
experiments by Tokumaru & Dimotakis (1991) performed at Re = 15 000.

When the forced and natural Strouhal numbers coincide, a small amount of three-
dimensionality remains very close to the body (figures 11 and 19). The present results
also validate two-dimensional numerical simulations of previous works, depending
on the amplitude values.

A parametric study of the topology of the flow has then been performed at the first
superharmonic frequency SF /St = 2. A bifurcation diagram (figure 18) shows a clear
transition between the resulting two-dimensional and three-dimensional flows. The
different kinds of residual three-dimensionality have been shown and the mechanism
leading to a two-dimensional state has been identified. This behaviour has not
previously been shown numerically and seems to be a new contribution to the physics
of the problem.

In summary, it has been shown by means of a parametric study that the wake
generated by a translating and rotationally oscillating circular cylinder can lead either
to a two-dimensional or a three-dimensional flow for the same Reynolds number,
depending on the rotation parameters.
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